login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of exponents of prime factorization of the numbers whose exponents in their prime power factorization are squares (A197680).
4

%I #7 Dec 27 2023 01:19:55

%S 1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,1,

%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%U 1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1

%N Product of exponents of prime factorization of the numbers whose exponents in their prime power factorization are squares (A197680).

%C All the terms are squares (A000290).

%C The first position of k^2, for k = 1, 2, ..., is 1, 12, 331, 834, 21512290, 26588, ..., which is the position of A085629(k^2) in A197680.

%H Amiram Eldar, <a href="/A368474/b368474.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A005361(A197680(n)).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/d) * Product_{p prime} (1 + Sum_{k>=1} k^2/p^(k^2)) = 1.16776748073813763932..., where d = A357016 is the asymptotic density of A197680.

%t f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, IntegerQ[Sqrt[#]] &], Times @@ e, Nothing]]; Array[f, 150]

%o (PARI) lista(kmax) = {my(e, ok); for(k = 1, kmax, e = factor(k)[, 2]; ok = 1; for(i = 1, #e, if(!issquare(e[i]), ok = 0; break)); if(ok, print1(vecprod(e), ", ")));}

%Y Cf. A000290, A005361, A085629, A197680, A357016.

%Y Similar sequences: A322327, A368472, A368473.

%K nonn,easy

%O 1,12

%A _Amiram Eldar_, Dec 26 2023