login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n,k) * binomial(4*n,n-k).
2

%I #25 Feb 10 2024 14:02:47

%S 1,2,2,-16,-126,-498,-880,3432,37762,175916,411502,-710752,-12482928,

%T -66911830,-190616760,70959984,4208145282,26042918836,86794308524,

%U 50521487200,-1397839172626,-10176550581570,-38838971577536,-51156092490048,443929768322704

%N a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n,k) * binomial(4*n,n-k).

%F a(n) = [x^n] ( (1-x)^2 * (1+x)^4 )^n.

%F The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x/((1-x)^2*(1+x)^4) ). See A369190.

%o (PARI) a(n) = sum(k=0, n, (-1)^k * binomial(2*n, k)*binomial(4*n, n-k));

%Y Cf. A234839, A370106.

%Y Cf. A369190.

%K sign

%O 0,2

%A _Seiichi Manyama_, Feb 10 2024