login
A368443
Expansion of e.g.f. exp(-x) / (4 - 3*exp(2*x)).
2
1, 5, 73, 1517, 42193, 1466645, 61177753, 2977205117, 165583073953, 10360379100965, 720265883283433, 55081115403503117, 4595165623000889713, 415299796681103596085, 40420990463421954662713, 4215173033091627126703517, 468870152072269125977393473
OFFSET
0,2
FORMULA
a(n) = (-1)^n + 3 * Sum_{k=1..n} 2^k * binomial(n,k) * a(n-k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=(-1)^i+3*sum(j=1, i, 2^j*binomial(i, j)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 24 2023
STATUS
approved