login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of terms of A054743 that divide n.
4

%I #8 Dec 21 2023 21:14:56

%S 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,4,1,1,

%T 1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,5,1,1,1,1,

%U 1,1,1,2,1,1,1,1,1,1,1,3,2,1,1,1,1,1,1

%N The number of terms of A054743 that divide n.

%C The number of divisors d of n such that e > p for all prime powers p^e in the prime factorization of d (i.e., e >= 1 and p^(e+1) does not divide d).

%C The largest of these divisors is A368329(n).

%H Amiram Eldar, <a href="/A368328/b368328.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(p^e) = 1 if e <= p, and a(p^e) = e - p + 1 if e > p.

%F a(n) >= 1, with equality if and only if n is in A207481.

%F Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 1/p^((p+1)*s)).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/((p-1)*p^p)) = 1.27325025767774256043... .

%t f[p_, e_] := If[e <= p, 1, e - p + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= f[i,1], 1, f[i,2] - f[i,1] + 1));}

%Y Cf. A054743, A207481, A365632, A368329, A368330, A368331, A368332.

%K nonn,easy,mult

%O 1,8

%A _Amiram Eldar_, Dec 21 2023