login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{k>=2} (zeta(k)/zeta(2*k) - 1).
6

%I #8 Aug 05 2024 13:41:46

%S 8,4,8,6,3,3,8,6,7,9,6,4,8,8,3,6,3,2,6,8,4,9,0,0,1,2,0,9,0,4,3,0,4,6,

%T 2,9,6,0,0,1,6,6,4,4,6,8,8,1,7,5,5,1,7,1,6,7,9,6,2,0,3,0,9,0,0,3,6,5,

%U 4,2,2,1,3,7,1,3,0,2,1,2,9,1,8,8,6,6,3,4,8,1,0,1,1,5,3,7,0,2,0,6,3,4,4,3,7

%N Decimal expansion of Sum_{k>=2} (zeta(k)/zeta(2*k) - 1).

%H Michael I. Shamos, <a href="https://citeseerx.ist.psu.edu/pdf/ae33a269baba5e8b1038e719fb3209e8a00abec5">Shamos's catalog of the real numbers</a>, 2011. See p. 637.

%F Equals Sum_{k>=2} mu(k)^2/(k*(k-1)) = Sum_{k>=2} 1/A368249(k).

%F Equals Sum_{k>=1} 1/A072777(k).

%F Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A368251(k).

%e 0.84863386796488363268490012090430462960016644688175...

%p evalf(sum(Zeta(k)/Zeta(2*k) - 1, k = 2 .. infinity), 120);

%o (PARI) sumpos(k=2, zeta(k)/zeta(2*k) - 1)

%Y Cf. A008683, A072777, A368249, A368251.

%K nonn,cons

%O 0,1

%A _Amiram Eldar_, Dec 19 2023