login
A368199
Number of times n appears as a term of A105774.
1
1, 2, 1, 0, 2, 0, 1, 2, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 0
OFFSET
0,2
COMMENTS
Although 0 is not a term of A105774, it makes sense to define A105774(0) = 0. Hence a(0) for this sequence is equal to 1.
LINKS
Benoit Cloitre and Jeffrey Shallit, Some Fibonacci-Related Sequences, arXiv:2312.11706 [math.CO], 2023.
FORMULA
There is a 9-state Fibonacci automaton that, on input n in Fibonacci (Zeckendorf) representation, computes a(n). Rewritten as a morphism, {a(n)} is the infinite fixed point of the morphism 0->01, 1->2, 2->45, 3->67, 4->67, 5->8, 6->61, 7->6, 8->35, followed by the coding sending 4,6->0; 0,2,3,7->1; 1,5,8->2.
CROSSREFS
Sequence in context: A362450 A298731 A321102 * A091392 A036577 A317189
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Dec 16 2023
STATUS
approved