login
Irregular triangle read by rows where row n is the trajectory starting from n and ending with 2 of the map x -> A368241(x).
2

%I #48 Jan 31 2024 07:58:12

%S 4,6,9,13,2,5,2,6,9,13,2,7,2,8,12,17,4,6,9,13,2,9,13,2,10,14,20,28,37,

%T 6,9,13,2,11,4,6,9,13,2,12,17,4,6,9,13,2,13,2,14,20,28,37,6,9,13,2,15,

%U 21,29,6,9,13,2,16,22,30,40,52,67,6,9,13,2,17,4,6,9,13,2

%N Irregular triangle read by rows where row n is the trajectory starting from n and ending with 2 of the map x -> A368241(x).

%C It is conjectured that every starting n reaches 2 eventually. (If not then the sequence has an infinite final row.)

%C Map A368241(x) decreases to the prime gap x-prevprime(x) when x is prime, or increases to x+primepi(x) otherwise, and will reach 2 when x is the greater of a twin prime pair (A006512, preceding prime gap 2).

%C Prime gaps and x+primepi(x) may become large, but if the twin prime conjecture is true then there would be large twin primes they might reach too.

%F T(n,0) = n.

%F T(n,k) = A368241(T(n,k-1)) for k >= 1.

%e Table T(n,k) begins:

%e n\k 0 1 2 3 4 5 6 7 8 9

%e --------------------------------------------

%e 4: 4 6 9 13 2

%e 5: 5 2

%e 6: 6 9 13 2

%e 7: 7 2

%e 8: 8 12 17 4 6 9 13 2

%e 9: 9 13 2

%e 10: 10 14 20 28 37 6 9 13 2

%e 11: 11 4 6 9 13 2

%e 12: 12 17 4 6 9 13 2

%e 13: 13 2

%e 14: 14 20 28 37 6 9 13 2

%e 15: 15 21 29 6 9 13 2

%e 16: 16 22 30 40 52 67 6 9 13 2

%e 17: 17 4 6 9 13 2

%e 18: 18 25 34 45 59 6 9 13 2

%e 19: 19 2

%e 20: 20 28 37 6 9 13 2

%o (PARI) row(n) = my(list=List(n)); while(n!=2, n = if (isprime(n), n - precprime(n-1), n + primepi(n)); listput(list, n)); Vec(list); \\ _Michel Marcus_, Dec 17 2023

%Y Cf. A368241.

%Y Cf. A000720, A005171, A010051, A006512.

%K nonn,tabf

%O 4,1

%A _Hendrik Kuipers_, Dec 16 2023