Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jul 09 2024 08:55:19
%S 2,6,36,1282,340880,477513804,2872221202512,72057600262282324,
%T 7462505061854009276768,3169126500572875969052992416,
%U 5492677668532714149024993226980288,38716571525226776302072008065489884436832,1106936151351216411420647256070432280699273711360
%N Number of ways of tiling the n X n torus up to diagonal and antidiagonal reflection of the square by two tiles that are each fixed under both diagonal and antidiagonal reflection.
%H S. N. Ethier and Jiyeon Lee, <a href="http://arxiv.org/abs/1502.03792">Counting toroidal binary arrays, II</a>, arXiv:1502.03792v1 [math.CO], Feb 12, 2015 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Lee/lee6.html">J. Int. Seq. 18 (2015)</a>.
%H Peter Kagey, <a href="/A368139/a368139.pdf">Illustration of a(3)=36</a>
%H Peter Kagey and William Keehn, <a href="https://arxiv.org/abs/2311.13072">Counting tilings of the n X m grid, cylinder, and torus</a>, arXiv: 2311.13072 [math.CO], 2023. See also <a href="https://cs.uwaterloo.ca/journals/JIS/VOL27/Kagey/kagey6.html">J. Int. Seq.</a>, (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-23.
%t A368139[n_] := 1/(4n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + n^2*If[OddQ[n], 2^((n^2 + 1)/2), (7*2^(n^2/2 - 2))] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*If[EvenQ[d], 2^(n^2/(2 d)), 2^((n^2 + n)/(2d))]]])
%Y Cf. A295223, A367526, A368140, A368141, A368142.
%K nonn
%O 1,1
%A _Peter Kagey_, Dec 16 2023