login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n * log(4/3) / log(3/2))
1

%I #70 Jan 29 2024 19:26:07

%S 0,0,1,2,2,3,4,4,5,6,7,7,8,9,9,10,11,12,12,13,14,14,15,16,17,17,18,19,

%T 19,20,21,21,22,23,24,24,25,26,26,27,28,29,29,30,31,31,32,33,34,34,35,

%U 36,36,37,38,39,39,40,41,41,42,43,43,44,45,46,46,47,48

%N a(n) = floor(n * log(4/3) / log(3/2))

%C Highest k with 3^(n+k) <= 4^n * 2^k.

%F a(n) = floor(n * log(3) / log(3/2)) - 2*n.

%F a(n) = floor(n * arctanh(1/7) / arctanh(1/5)).

%F a(n) = A325913(n) - n.

%F a(n) = A117630(n) - 2*n.

%F a(n) = A054414(n) - 2*n - 1.

%t Table[Floor[n*Log[4/3]/Log[3/2]],{n,0,68}] (* _James C. McMahon_, Jan 27 2024 *)

%o (PARI) alist(N) = my(a=-1, b=1, k=0); vector(N, i, a+=2; b*=3; if(logint(b, 2) < a, a++; b*=3; k++); k); \\ note that i is n+1

%Y Cf. A054414, A117630, A325913, A369522 (slope).

%K nonn,easy

%O 0,4

%A _Ruud H.G. van Tol_, Jan 25 2024