login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.
2

%I #9 Dec 14 2023 16:28:33

%S 1,1,1,1,2,2,1,3,12,6,1,1,9,24,12,1,5,5,135,720,60,1,1,25,5,405,1440,

%T 360,1,7,7,875,175,8505,60480,2520,1,1,49,7,4375,175,127575,120960,

%U 5040,1,1,1,343,49,21875,875,382725,3628800,15120

%N Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.

%C A160014 are the generalized Clausen numbers, for m = 0 the formula computes the cumulative radical A048803, and for m = 1 the Hirzebruch numbers A091137.

%F A(m, n) = A160014(m, n) * A(m, n - 1) for n > 0 and A(m, 0) = 1.

%e Array A(m, n) starts:

%e [0] 1, 1, 2, 6, 12, 60, 360, 2520, ... A048803

%e [1] 1, 2, 12, 24, 720, 1440, 60480, 120960, ... A091137

%e [2] 1, 3, 9, 135, 405, 8505, 127575, 382725, ... A368092

%e [3] 1, 1, 5, 5, 175, 175, 875, 875, ...

%e [4] 1, 5, 25, 875, 4375, 21875, 765625, 42109375, ...

%e [5] 1, 1, 7, 7, 49, 49, 3773, 3773, ...

%e [6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ...

%e [7] 1, 1, 1, 1, 11, 11, 143, 143, ...

%e [8] 1, 1, 1, 11, 11, 143, 1573, 1573, ...

%e [9] 1, 1, 11, 11, 1573, 1573, 17303, 17303, ...

%o (SageMath)

%o from functools import cache

%o def Clausen(n, k):

%o return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s))

%o @cache

%o def CumProdClausen(m, n):

%o return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1

%o for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])

%Y Cf. A160014, A048803 (m=0), A091137 (m=1), A368092 (m=2).

%Y Cf. A171080, A238963, A368116, A368048.

%K nonn,tabl

%O 0,5

%A _Peter Luschny_, Dec 12 2023