Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Dec 10 2023 16:58:22
%S 0,3,21,76,200,435,833,1456,2376,3675,5445,7788,10816,14651,19425,
%T 25280,32368,40851,50901,62700,76440,92323,110561,131376,155000,
%U 181675,211653,245196,282576,324075,369985,420608,476256,537251
%N a(n) = ((n + 1)^2 * (5*n + 4)*n) / 12.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = Sum_{k=0..n} A368045(k).
%F G.f.: x*(3 + 6*x + x^2)/(1 - x)^5. - _Stefano Spezia_, Dec 10 2023
%t A368046[n_]:=((n+1)^2(5n+4)n)/12;Array[A368046,50,0] (* or *)
%t LinearRecurrence[{5,-10,10,-5,1},{0,3,21,76,200},50] (* _Paolo Xausa_, Dec 10 2023 *)
%Y Cf. A368045.
%K nonn,easy
%O 0,2
%A _Peter Luschny_, Dec 09 2023