login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{i=1..n, j=1..n} (i + 4*j).
3

%I #7 Dec 07 2023 02:19:31

%S 1,5,2700,567567000,101370917007360000,26995322179162164731904000000,

%T 16635639072295355604762223305031680000000000,

%U 34026881962001914598329145027742925521204742717440000000000000

%N a(n) = Product_{i=1..n, j=1..n} (i + 4*j).

%F a(n) ~ A^(1/4) * 5^(25*n*(n+1)/8 + 29/48) * n^(n^2 - 29/48) / (Pi^(1/4) * Gamma(1/4)^(1/2) * 2^(n*(4*n+5) + 5/6) * exp(3*n^2/2 + 1/48)), where A = A074962 is the Glaisher-Kinkelin constant.

%t Table[Product[i + 4*j, {i, 1, n}, {j, 1, n}], {n, 0, 10}]

%Y Cf. A074962, A079478, A324402, A367956, A367958.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Dec 06 2023