login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367926
a(n) is the number of 2 X 2 matrices over the integers mod n that are invertible mod n for every permutation of their elements.
1
4, 40, 64, 400, 160, 1704, 1024, 3240, 1600, 11560, 2560, 23280, 6816, 16000, 16384, 71104, 12960, 112680, 25600, 68160, 46240, 247720, 40960, 250000, 93120, 262440, 109056, 641200, 64000, 842280, 262144, 462400, 284416, 681600, 207360, 1733904, 450720, 931200, 409600, 2633440, 272640, 3196200, 739840
OFFSET
2,1
COMMENTS
a(n) is the number of 4-tuples [a,b,c,d] of integers in [0,1,...,n-1] such that a*b-c*d, a*c-b*d and a*d-b*c are all coprime to n.
FORMULA
Multiplicative with a(p^k) = p^(4*(k-1)) * (p^4 - 3*p^3 + 9*p^2 - 17*p + 10) for primes p.
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = Product_{p prime} (1 - 3/p^2 + 9/p^3 - 17/p^4 + 10/p^5) = 0.42729799106430918317... . - Amiram Eldar, Jan 20 2024
EXAMPLE
a(3) = 40 because the 4-tuples [0, 1, 1, 1], [0, 1, 1, 2], [1, 1, 1, 2], [0, 1, 2, 2], [0, 2, 2, 2], [1, 2, 2, 2] and their permutations satisfy the criterion for n = 4. Of these, [0,1,1,2] and [0,1,2,2] each have 12 permutations and the others have 4, so a(3) = 2 * 12 + 4 * 4 = 40.
MAPLE
filter:= proc(L, n)
andmap(t -> igcd(t, n)=1, {L[1]*L[2]-L[3]*L[4], L[1]*L[3]-L[2]*L[4], L[1]*L[4]-L[2]*L[3]})
end proc:
g:= proc(n) local a, b, c, d, t; option remember;
t:= 0;
for a from 0 to n-1 do
for b from 0 to a do
for c from 0 to b do
for d from 0 to c do
if filter([a, b, c, d], n) then t:= t + combinat:-numbperm([a, b, c, d]) fi
od od od od;
t
end proc:
f:= proc(n) local F, t;
F:= ifactors(n)[2];
mul(g(t[1]^t[2]), t=F)
end proc:
map(f, [$2..50]);
MATHEMATICA
f[p_, e_] := p^(4*(e - 1))*(p^4 - 3*p^3 + 9*p^2 - 17*p + 10); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100, 2] (* Amiram Eldar, Jan 20 2024 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, p=f[i, 1]; e=f[i, 2]; p^(4*(e-1)) * (p^4 - 3*p^3 + 9*p^2 - 17*p + 10)); } \\ Amiram Eldar, Jan 20 2024
CROSSREFS
Sequence in context: A077329 A169967 A061473 * A091104 A069539 A063997
KEYWORD
nonn,mult
AUTHOR
Robert Israel, Dec 05 2023
STATUS
approved