Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Dec 29 2023 16:41:17
%S 1,2,6,45,1376,161587,64552473,85987037645,386933032425826,
%T 6005080379837219319,328011924848834642962619,
%U 64153024576968812343635391868,45547297603829979923254392040011994,118654043008142499115765307533395739785599
%N Number of sets of nonempty subsets of {1..n} with the same number of edges as covered vertices.
%H Andrew Howroyd, <a href="/A367916/b367916.txt">Table of n, a(n) for n = 0..50</a>
%F Binomial transform of A054780.
%e The a(0) = 1 through a(2) = 6 set-systems:
%e {} {} {}
%e {{1}} {{1}}
%e {{2}}
%e {{1},{2}}
%e {{1},{1,2}}
%e {{2},{1,2}}
%t Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Length[Union@@#]==Length[#]&]],{n,0,3}]
%o (PARI) \\ Here b(n) is A054780(n).
%o b(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(2^k-1, n))
%o a(n) = sum(k=0, n, binomial(n,k) * b(k)) \\ _Andrew Howroyd_, Dec 29 2023
%Y The covering case is A054780.
%Y For graphs we have A367862, covering A367863, unlabeled A006649.
%Y These set-systems have ranks A367917.
%Y A000372 counts antichains, covering A006126, nonempty A014466.
%Y A003465 counts set-systems covering {1..n}, unlabeled A055621.
%Y A058891 counts set-systems, unlabeled A000612.
%Y A059201 counts covering T_0 set-systems.
%Y A136556 counts set-systems on {1..n} with n edges.
%Y Cf. A092918, A102896, A133686, A306445, A323818, A355740, A367770, A367869, A367901, A367902, A367905.
%K nonn
%O 0,2
%A _Gus Wiseman_, Dec 08 2023