login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{i=1..n, j=1..n} (i^8 + j^8).
9

%I #22 Dec 08 2023 04:44:51

%S 1,2,67634176,1775927682136440882473213952,

%T 22495149450984565292579847926810488282934424886723006835982336

%N a(n) = Product_{i=1..n, j=1..n} (i^8 + j^8).

%C Next term is too long to be included.

%C For m > 0, Product_{j=1..n, k=1..n} (j^m + k^m) ~ c(m) * exp(n*(n+1)*s(m) - m*n*(n-2)/2) * n^(m*(n^2 - 1/4 - v)), where v = 0 if m > 1 and v = 1/6 if m = 1, s(m) = Sum_{j>=1} (-1)^(j+1)/(j*(1 + m*j)) and c(m) is a constant (dependent only on m). Equivalently, s(m) = log(2) - HurwitzLerchPhi(-1, 1, 1 + 1/m).

%C c(1) = A / (2^(1/12) * exp(1/12) * sqrt(Pi)).

%C c(2) = exp(Pi/12) * Gamma(1/4) / (2^(5/4) * Pi^(5/4)).

%C c(3) = A * 3^(1/6) * exp(Pi/(6*sqrt(3)) - 1/12) * Gamma(1/3)^2 / (2^(7/4) * Pi^(13/6)), where A = A074962 is the Glaisher-Kinkelin constant.

%C c(4) = A306620.

%F For n>0, a(n)/a(n-1) = A367833(n)^2 / (2*n^24).

%F a(n) ~ c * 2^(n*(n+1)) * (1 + 1/(sqrt(1 - 1/sqrt(2)) - 1/2))^(sqrt(2 + sqrt(2))*n*((n+1)/2)) * (1 + 1/(sqrt(1 + 1/sqrt(2)) - 1/2))^(sqrt(2 - sqrt(2))*n*((n+1)/2)) * (n^(8*n^2 - 2) / exp(12*n^2 - Pi*sqrt(1 + 1/sqrt(2))*n*(n+1))), where c = 0.043985703178712025347328240881106818917398444790454628282522057393529338998...

%t Table[Product[i^8 + j^8, {i, 1, n}, {j, 1, n}], {n, 0, 6}]

%o (Python)

%o from math import prod, factorial

%o def A367834(n): return (prod(i**8+j**8 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**4)**2<<n # _Chai Wah Wu_, Dec 02 2023

%Y Cf. A079478 (m=1), A324403 (m=2), A324426 (m=3), A324437 (m=4), A324438 (m=5), A324439 (m=6), A324440 (m=7).

%Y Cf. A306620, A367670, A367833.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Dec 02 2023