%I #13 Dec 21 2023 15:18:50
%S 0,1111,2,1000,3,1001,4,1002,5,1003,6,1004,7,1005,8,1006,9,1007,21,
%T 1008,22,1009,23,1010,24,1011,25,1012,26,1013,27,1014,28,1015,29,1016,
%U 32,1017,33,1018,34,1019,35,1020,31,1022,36,1021,37,1023,38,1024,39,1025,41,1026,43,1027,44,1028,45,1029,46,1030
%N Lexicographically earliest sequence of distinct nonnegative terms such that the Levenshtein distance (Ld) between a(n) and a(n+1) is equal to 4.
%H Éric Angelini, <a href="https://cinquantesignes.blogspot.com/2023/12/more-levenshtein-distances.html">More Levenshtein distances</a>, Personal blog, December 2023.
%e a(1) = 0 and a(2) = 1111 are separated by an Ld of 4
%e a(2) = 1111 and a(3) = 2 are separated by an Ld of 4
%e a(3) = 2 and a(4) = 1000 are separated by an Ld of 4
%e a(4) = 1000 and a(5) = 3 are separated by an Ld of 4, etc.
%t a[1]=0;a[n_]:=a[n]=(k=1;While[MemberQ[Array[a,n-1],k]||EditDistance[ToString@a[n-1],ToString@k]!=4,k++];k);Array[a,64]
%o (Python)
%o from itertools import islice
%o from Levenshtein import distance as Ld
%o def agen(): # generator of terms
%o an, aset, mink = 0, {0}, 1
%o while True:
%o yield an
%o s, k = str(an), mink
%o while k in aset or Ld(s, str(k)) != 4: k += 1
%o an = k
%o aset.add(k)
%o while mink in aset: mink += 1
%o print(list(islice(agen(), 64))) # _Michael S. Branicky_, Dec 01 2023
%Y Cf. A118763, A367812, A367813, A367815.
%K base,nonn
%O 1,2
%A _Eric Angelini_ and _Giorgos Kalogeropoulos_, Dec 01 2023