Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Dec 30 2023 23:34:20
%S 2,11,307,35419,347651,3091643,3417569,30001253,34158919,35515619,
%T 305524927,312123463,313513517,327371987,337660679,348898811,
%U 352023571,3013005397,3051026827,3147298717,3149171717,3171167353,3175236553,3226951193,3248169343,3306563683,3350101739,3366748421,3403341569
%N Primes p such that p^2 is the sum of a prime and its reverse.
%C Primes p such that p^2 = A056964(q) for some term q of A367796.
%C Do all terms except for 2 and 11 start with 3?
%C From _Ivan N. Ianakiev_, Dec 16 2023: (Start)
%C To prove that for all n > 2 the first digit of a(n) is 3 is easy if the number of digits of q is odd. Sketch of a proof: Let p^2 = q + rev(q). We observe that:
%C a) the last digit of q must be 1, 3, 7, or 9;
%C b) the last digit of rev(q) cannot be zero, since the first digit of q cannot be zero;
%C c) the last digit of rev(q) cannot be odd, since the last digit of p^2 cannot be even (if it were, that would imply that p is even).
%C The rest is just a matter of bookkeeping.
%C To prove that for n > 2 the number of digits of q cannot be even is probably much more difficult. (End)
%e a(1) = 2 is a term because 2^2 = 4 = 2 + 2 with 2 prime.
%e a(2) = 11 is a term because 11^2 = 121 = 29 + 92 with 11 and 29 prime.
%e a(3) = 307 is a term because 307^2 = 94249 = 20147 + 74102 with 307 and 20147 prime.
%e a(4) = 35419 is a term because 35419^2 = 1254505561 = 261104399 + 993401162 with 35419 and 261104399 prime.
%e a(5) = 347651 is a term because 347651^2 = 120861217801 = 20870609999 + 99990607802 with 347651 and 20870609999 prime.
%e a(6) = 3091643 is a term because 3091643^2 = 9558256439449 = 2059108419947 + 7499148019502 with 3091643 and 2059108419947 prime.
%e a(7) = 3417569 is a term because 3417569^2 = 11679777869761 = 2080783998959 + 9598993870802 with 3417569 and 2080783998959 prime.
%e a(8) = 30001253 is a term because 30001253^2 = 900075181570009 = 200000140570007 + 700075041000002 with 30001253 and 200000140570007 prime.
%e a(9) = 34158919 is a term because 34158919^2 = 1166831747248561 = 206841324099959 + 959990423148602 with 34158919 and 206841324099959 prime.
%e a(10) = 35515619 is a term because 35515619^2 = 1261359192953161 = 261359249999999 + 999999942953162 with 35515619 and 261359249999999 prime.
%p f:= proc(n) local y,c,d,dp,i,delta,m;
%p y:= convert(n^2,base,10);
%p d:= nops(y);
%p if d::even then
%p if y[-1] <> 1 then return false fi;
%p dp:= d-1;
%p y:= y[1..-2];
%p c[dp]:= 1;
%p else
%p dp:= d;
%p c[dp]:= 0;
%p fi;
%p c[0]:= 0;
%p for i from 1 to floor(dp/2) do
%p delta:= y[i] - y[dp+1-i] - c[i-1] - 10*c[dp+1-i];
%p if delta = 0 then c[dp-i]:= 0; c[i]:= 0;
%p elif delta = -1 then c[dp-i]:= 1; c[i]:= 0;
%p elif delta = -10 then c[dp-i]:= 0 ; c[i]:= 1;
%p elif delta = -11 then c[dp-i]:= 1; c[i]:= 1;
%p else return false
%p fi;
%p if y[i] + 10*c[i] - c[i-1] < 0 or (i=1 and y[i]+10*c[i]-c[i-1]=1) then return false fi;
%p od;
%p m:= (dp+1)/2;
%p delta:= y[m] + 10*c[m] - c[m-1];
%p if not member(delta, [seq(i,i=0..18,2)]) then return false fi;
%p [seq(y[i]+ 10*c[i]-c[i-1],i=1..m)]
%p end proc:
%p g:= proc(L) local T,d,t,p, x, i; uses combinat;
%p d:= nops(L);
%p T:= cartprod([select(t -> t[1]::odd, [seq([L[1]-x,x],x=max(1,L[1]-9)..min(L[1],9))]),
%p seq([seq([L[i]-x,x],x=max(0,L[i]-9)..min(9, L[i]))],i=2..d-1)]);
%p while not T[finished] do
%p t:= T[nextvalue]();
%p p:= add(t[i][1]*10^(i-1),i=1..d-1) + L[-1]/2 * 10^(d-1) +
%p add(t[i][2]*10^(2*d-i-1),i=1..d-1);
%p if isprime(p) then return p fi;
%p od;
%p -1
%p end proc:
%p p:= 11: R:= 2, 11:
%p while p < 10^8 do
%p p:= nextprime(p);
%p d:= 1+ilog10(p^2);
%p if d::even and p^2 >= 2*10^(d-1) then p:= nextprime(floor(10^(d/2))); fi;
%p v:= f(p);
%p if v = false then next fi;
%p q:= g(v);
%p if q = -1 then next fi;
%p R:= R, p;
%p od:
%p R;
%Y Cf. A056964, A367796, A367900, A367871.
%K nonn,base
%O 1,1
%A _Robert Israel_, Nov 30 2023