%I #6 Dec 03 2023 09:12:02
%S 1,2,6,6,24,6,16,24,24,20,120,120,120,480,120,120,480,480,120,40,120,
%T 1800,4800,720,720,1200,720,7200,384,4800,384,7200,720,1800,720,320,
%U 384,720,7200,320,384,720,720,384,720,320,720,720,384,320,384,720,320,1920,1440,720
%N a(n) is the denominator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in the Eden growth model on the square lattice (see A367760), when n square cells have been added.
%C Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.
%H <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%F A367764(n)/a(n) = (A367760(n)/A367761(n))/A335573(n+1).
%e As an irregular triangle:
%e 1;
%e 2;
%e 6, 6;
%e 24, 6, 16, 24, 24;
%e 20, 120, 120, 120, 480, 120, 120, 480, 480, 120, 40, 120;
%e ...
%Y Cf. A000105, A246521, A335573, A367676, A367760, A367761, A367764 (numerators), A367767.
%K nonn,frac,tabf
%O 1,2
%A _Pontus von Brömssen_, Dec 02 2023