login
A367716
G.f. A(x) satisfies A(x) = 1 / ((1 + x) * (1 - x * (1 + x) * A(x^2))).
2
1, 0, 2, 1, 4, 6, 13, 23, 44, 82, 154, 292, 547, 1036, 1943, 3672, 6900, 13022, 24498, 46194, 86958, 163892, 308624, 581532, 1095275, 2063534, 3886876, 7322523, 13793363, 25984580, 48948062, 92209073, 173699564, 327214934, 616397498, 1161163428, 2187371054
OFFSET
0,3
FORMULA
a(n) = (-1)^n + Sum_{k=0..n-1} a(floor(k/2)) * a(n-1-k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=(-1)^i+sum(j=0, i-1, v[j\2+1]*v[i-j])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 28 2023
STATUS
approved