Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Dec 23 2023 16:42:41
%S 12,72,744,11256,201960,3871416,76138536,1512609912,30171384168,
%T 602782587960,12050495247528,240968665611768,4819043435788776,
%U 96378229818994104,1927543485550004520,38550700825394191224,771012665426135994984,15420242499878035355448,308404763528431125030312
%N Number of degree 2 vertices in the n-Menger sponge graph.
%C The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.
%H Allan Bickle, <a href="https://allanbickle.files.wordpress.com/2016/05/mengerspongedegree.pdf">Degrees of Menger and Sierpinski Graphs</a>, Congr. Num. 227 (2016) 197-208.
%H Allan Bickle, <a href="https://allanbickle.files.wordpress.com/2016/05/mengerspongeshort.pdf">MegaMenger Graphs</a>, The College Mathematics Journal, 49 1 (2018) 20-26.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (31,-244,480).
%F a(n) = (1/17)*20^n + (2/5)*8^n + (216/85)*3^n.
%F a(n) = 20*a(n-1) - (3/5)*8^n - (72/5)*3^n.
%F a(n) = 20^n - A367701(n) - A367702(n) - A367706(n) - A367707(n).
%F 2*a(n) = 2*A291066(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n).
%F G.f.: 12*x*(1 - 25*x + 120*x^2)/((1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - _Stefano Spezia_, Nov 27 2023
%e The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 12.
%t LinearRecurrence[{31,-244,480}, {12, 72, 744}, 25] (* _Paolo Xausa_, Nov 28 2023 *)
%o (Python)
%o def A367700(n): return (5*20**n+(34<<3*n)+216*3**n)//85 # _Chai Wah Wu_, Nov 27 2023
%Y Cf. A009964 (number of vertices), A291066 (number of edges).
%Y Cf. A359452, A359453 (numbers of corner and non-corner vertices).
%Y Cf. A083233, A332705 (surface area).
%Y Cf. A367701, A367702, A367706, A367707 (degrees 2 through 6).
%Y Cf. A001018, A271939, A365602, A365606, A365607, A365608 (Sierpinski carpet graphs).
%K nonn,easy
%O 1,1
%A _Allan Bickle_, Nov 27 2023