%I #12 Dec 03 2023 11:34:33
%S 1,1,1,1,5,2,23,1,1,253,5,1,23,713,11,5,149,157,5,23,1,3671,286417,2,
%T 73,289,1,2657,103,289,15923,19067,1,1661,1,10019,16591,1,323,193,
%U 1661,1,169,14603,71,853,11,23,1037,27151,15923,23,529,487,14267,1
%N a(n) is the numerator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in the version of the Eden growth model described in A367671 when n square cells have been added.
%C Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.
%H <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%F a(n)/A367676(n) = (A367671(n)/A367672(n))/A335573(n+1).
%e As an irregular triangle:
%e 1;
%e 1;
%e 1, 1;
%e 5, 2, 23, 1, 1;
%e 253, 5, 1, 23, 713, 11, 5, 149, 157, 5, 23, 1;
%e ...
%Y Cf. A000105, A246521, A335573, A367671, A367672, A367676 (denominators), A367677, A367764.
%K nonn,frac,tabf
%O 1,5
%A _Pontus von Brömssen_, Nov 26 2023