%I #8 Nov 26 2023 08:37:38
%S 1,2,5,13,34,89,234,615,1616,4246,11156,29314,77026,202394,531811,
%T 1397387,3671781,9647988,25351094,66612640,175031647,459913889,
%U 1208471657,3175385173,8343655339,21923823599,57607130438,151368736483,397737124030,1045095727865
%N G.f. A(x) satisfies A(x) = 1 / (1 - x - x * (1 + x + x^2 + x^3 + x^4) * A(x^5)).
%F a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} a(floor(k/5)) * a(n-1-k).
%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, v[j\5+1]*v[i-j])); v;
%Y Cf. A367655, A367656, A367657.
%Y Cf. A367654, A367661.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Nov 26 2023