login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of maximal independent vertex sets and minimal vertex covers in the n-trapezohedral graph.
0

%I #10 May 25 2024 23:34:14

%S 3,3,6,11,18,30,52,91,159,278,487,854,1498,2628,4611,8091,14198,24915,

%T 43722,76726,134644,236283,414647,727654,1276943,2240878,3932466,

%U 6900996,12110403,21252275,37295142,65448411,114853954,201554638,353703732,620706779

%N Number of maximal independent vertex sets and minimal vertex covers in the n-trapezohedral graph.

%C Extended to n=1 using the formula/recurrence.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximalIndependentVertexSet.html">Maximal Independent Vertex Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalVertexCover.html">Minimal Vertex Cover</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TrapezohedralGraph.html">Trapezohedral Graph</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,2,-1).

%F a(n) = A001608(2n) + 1.

%F a(n) = A109377(n+2) + 1.

%F a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4).

%F G.f.: x*(3-6*x+6*x^2-4*x^3)/(1-3*x+3*x^2-2*x^3+x^4).

%t Table[1 + RootSum[-1 + # - 2 #^2 + #^3 &, #^n &], {n, 0, 20}]

%t LinearRecurrence[{3, -3, 2, -1}, {3, 3, 6, 11}, 20]

%t CoefficientList[Series[(3 - 6 x + 6 x^2 - 4 x^3)/(1 - 3 x + 3 x^2 - 2 x^3 + x^4), {x, 0, 20}], x]

%Y Cf. A001608, A109377.

%K nonn,easy

%O 1,1

%A _Eric W. Weisstein_, Nov 25 2023