Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Dec 18 2023 14:50:35
%S -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,10,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,20,11,
%T 2,-1,-1,-1,-1,-1,-1,-1,-1,30,21,12,3,-1,-1,-1,-1,-1,-1,-1,40,31,22,
%U 13,4,-1,-1,-1,-1,-1,-1,50,41,32,23,14,-1,5,-1,-1,-1,-1,60,51,42,33,-1,24,15,6,-1,-1,-1,70,61,52,-1,43,34,25,16,7
%N a(n) is the unique k such that n is the comma-successor of k, or -1 if k does not exist.
%C If k exists, it could be called the comma-predecessor of n.
%C a(n) is the unique k such that A367338(k) = n, or -1.
%C a(n) = -1 iff n is in A367600.
%H Michael S. Branicky, <a href="/A367614/b367614.txt">Table of n, a(n) for n = 1..10000</a>
%o (Python)
%o def a(n):
%o y = int(str(n)[0])
%o x = (n-y)%10
%o k = n - y - 10*x
%o kk = k + 10*x + y-1
%o return k if k > 0 and int(str(kk)[0]) != y-1 else -1
%o print([a(n) for n in range(1, 86)]) # _Michael S. Branicky_, Dec 16 2023
%Y Cf. A121805, A367600, A367338.
%K sign,base
%O 1,11
%A _N. J. A. Sloane_, Dec 16 2023