Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Nov 23 2023 14:34:00
%S 1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,1,1,27,1,1,1,1,32,1,
%T 1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,1,1,1,1,1,27,1,8,1,1,1,1,1,1,1,64,1,1,
%U 1,1,1,1,1,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N The exponentially evil part of n: the largest unitary divisor of n that is an exponentially evil number (A262675).
%H Amiram Eldar, <a href="/A367513/b367513.txt">Table of n, a(n) for n = 1..10000</a>
%F Multiplicative with a(p^e) = p^(e*A010059(e)) = p^A102391(e).
%F a(n) = n/A367514(n).
%F A001221(a(n)) = A367512(n).
%F A034444(a(n)) = A367516(n).
%F a(n) >= 1, with equality if and only if n is an exponentially odious number (A270428).
%F a(n) <= n, with equality if and only if n is an exponentially evil number (A262675).
%t f[p_, e_] := p^(e * (1 - ThueMorse[e])); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(hammingweight(f[i, 2])%2, 1, f[i, 1]^f[i, 2]));}
%o (Python)
%o from math import prod
%o from sympy import factorint
%o def A367513(n): return prod(p**e for p, e in factorint(n).items() if e.bit_count()&1^1) # _Chai Wah Wu_, Nov 23 2023
%Y Cf. A001969, A010059, A034444, A102391, A262675, A270428, A366902, A366904, A367512, A367516.
%Y Similar sequences: A350388, A350389, A366906, A367168, A367514.
%K nonn,easy,mult
%O 1,8
%A _Amiram Eldar_, Nov 21 2023