login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the final digits of the squarefree divisors of n.
2

%I #18 Jun 21 2024 17:48:08

%S 1,3,4,3,6,12,8,3,4,8,2,12,4,14,14,3,8,12,10,8,12,6,4,12,6,12,4,14,10,

%T 22,2,3,8,14,18,12,8,20,16,8,2,26,4,6,14,12,8,12,8,8,12,12,4,12,12,14,

%U 20,20,10,22,2,6,12,3,14,24,8,14,16,24,2,12,4,14,14,20

%N Sum of the final digits of the squarefree divisors of n.

%C Inverse Möbius transform of mu(n)^2 * (n mod 10). - _Wesley Ivan Hurt_, Jun 21 2024

%H Robert Israel, <a href="/A367503/b367503.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = Sum_{d|n} mu(d)^2 * (d mod 10).

%e a(10) = 8. The squarefree divisors of 10 are 1, 2, 5, 10 and the sum of their final digits is 1 + 2 + 5 + 0 = 8.

%p f:= proc(n) local t; add(t mod 10, t = map(convert,combinat:-powerset(numtheory:-factorset(n)),`*`)) end proc:

%p map(f, [$1..100]); # _Robert Israel_, Nov 21 2023

%t Table[DivisorSum[n, MoebiusMu[#]^2*Mod[#, 10] &], {n, 100}]

%o (PARI) a(n) = sumdiv(n, d, if (issquarefree(d), d%10)); \\ _Michel Marcus_, Nov 21 2023

%Y Cf. A005117 (squarefree numbers), A010879 (final digit of n), A367466 (sum of the final digits of the divisors of n), A371925 (numbers that occur in this sequence).

%K nonn,easy,base

%O 1,2

%A _Wesley Ivan Hurt_, Nov 20 2023