Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #16 Aug 26 2024 20:15:40
%S 1,41,53,231,532,1632,1642,9701,13372,19613,25518,31929,92476,97433
%N Numbers k such that k^5*2^k + 1 is a prime.
%t Select[Range[2000], PrimeQ[#^5*2^# + 1] &] (* _Amiram Eldar_, Nov 18 2023 *)
%o (Magma) [k: k in [1..1000] | IsPrime(k^5*2^k+1)];
%Y Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), A366422 (m = 4), this sequence (m = 5).
%K nonn,more
%O 1,2
%A _Juri-Stepan Gerasimov_, Nov 18 2023
%E a(10)-a(12) from _Michael S. Branicky_, Nov 18 2023
%E a(13)-a(14) from _Michael S. Branicky_, Aug 26 2024