%I #7 Nov 21 2023 08:22:02
%S 4,12,18,30,36,40,42,54,60,66,78,81,90,100,102,112,114,120,126,135,
%T 138,140,150,168,174,180,186,189,198,210,220,222,225,234,246,250,252,
%U 258,260,270,280,282,297,300,306,315,318,330,336,340,342,350,351,352,354
%N Numbers m such that bigomega(m) is the sum of prime indices of some semiprime divisor of m.
%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C These are the Heinz numbers of the partitions counted by A367394.
%t prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t Select[Range[100],MemberQ[Total/@Subsets[prix[#],{2}],PrimeOmega[#]]&]
%Y The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
%Y sum-full sum-free comb-full comb-free semi-full semi-free
%Y -----------------------------------------------------------
%Y partitions: A367212 A367213 A367218 A367219 A367394 A367398
%Y strict: A367214 A367215 A367220 A367221 A367395 A367399
%Y subsets: A367216 A367217 A367222 A367223 A367396 A367400
%Y ranks: A367224 A367225 A367226 A367227 A367397* A367401
%Y A325761 ranks partitions whose length is a part, counted by A002865.
%Y A088809 and A093971 count subsets containing semi-sums.
%Y A236912 counts partitions with no semi-sum of the parts, ranks A364461.
%Y A237113 counts partitions with a semi-sum of the parts, ranks A364462.
%Y A304792 counts subset-sums of partitions, strict A365925.
%Y A366738 counts semi-sums of partitions, strict A366741.
%Y Triangles:
%Y A365381 counts subsets with a subset summing to k, complement A366320.
%Y A365541 counts subsets with a semi-sum k.
%Y A367404 counts partitions with a semi-sum k, strict A367405.
%Y Cf. A000700, A229816, A237667, A237668, A238628, A363225, A364272, A365543, A365658, A365918, A366740.
%K nonn
%O 1,1
%A _Gus Wiseman_, Nov 21 2023