login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying A(x)^2 = A(x*A(x)) / (1-x) with A(0) = 0.
4

%I #14 Jan 08 2024 15:35:27

%S 1,1,2,3,7,14,34,77,193,472,1214,3099,8122,21293,56666,151261,407519,

%T 1102006,2998716,8189515,22467935,61841586,170818016,473173219,

%U 1314463002,3660532769,10218207713,28584456783,80124502593,225011930357,633003693094,1783658958681,5033641233827

%N Expansion of g.f. A(x) satisfying A(x)^2 = A(x*A(x)) / (1-x) with A(0) = 0.

%C Note that if F(x)^2 = (1+x) * F(x*F(x)) with F(0) = 1, then F(x) is the g.f. of A088792.

%H Paul D. Hanna, <a href="/A367387/b367387.txt">Table of n, a(n) for n = 1..938</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n and B(x) = x*A(x) satisfies the following formulas.

%F (1) A(x)^2 = A(x*A(x)) / (1-x).

%F (2) A(x) = x/(1-x) / ( (1 - B(x)) * (1 - B(B(x))) * (1 - B(B(B(x)))) * (1 - B(B(B(B(x))))) * ...), an infinite product involving iterations of B(x) = x*A(x).

%F The iterations of B(x) = x*A(x) begin

%F (3.a) B(B(x)) = x*(1-x) * A(x)^3.

%F (3.b) B(B(B(x))) = x*(1-x)^3 * (1 - x*A(x)) * A(x)^7.

%F (3.c) B(B(B(B(x)))) = x*(1-x)^7 * (1 - x*A(x))^3 * (1 - x*(1-x)*A(x)^3) * A(x)^15.

%F (3.d) B(B(B(B(B(x))))) = x*(1-x)^15 * (1 - x*A(x))^7 * (1 - x*(1-x)*A(x)^3)^3 * (1 - x*(1-x)^3*(1-x*A(x))*A(x)^7) * A(x)^31.

%F The compositions of g.f. A(x) with the iterations of B(x) = x*A(x) begin

%F (4.a) A(B(x)) = (1-x) * A(x)^2.

%F (4.b) A(B(B(x))) = (1-x)^2 * (1 - x*A(x)) * A(x)^4.

%F (4.c) A(B(B(B(x)))) = (1-x)^4 * (1 - x*A(x))^2 * (1 - x*(1-x)*A(x)^3) * A(x)^8.

%F (4.d) A(B(B(B(B(x))))) = (1-x)^8 * (1 - x*A(x))^4 * (1 - x*(1-x)*A(x)^3)^2 * (1 - x*(1-x)^3*(1-x*A(x))*A(x)^7) * A(x)^16.

%e G.f.: A(x) = x + x^2 + 2*x^3 + 3*x^4 + 7*x^5 + 14*x^6 + 34*x^7 + 77*x^8 + 193*x^9 + 472*x^10 + 1214*x^11 + 3099*x^12 + 8122*x^13 + 21293*x^14 + 56666*x^15 + ...

%e where A(x)^2 = A(x*A(x)) / (1-x) as can be seen from the following expansions

%e A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 10*x^5 + 24*x^6 + 54*x^7 + 133*x^8 + 320*x^9 + 809*x^10 + 2038*x^11 + 5278*x^12 + 13702*x^13 + 36144*x^14 + 95758*x^15 + ...

%e A(x*A(x)) = x^2 + x^3 + 3*x^4 + 5*x^5 + 14*x^6 + 30*x^7 + 79*x^8 + 187*x^9 + 489*x^10 + 1229*x^11 + 3240*x^12 + 8424*x^13 + 22442*x^14 + 59614*x^15 + ...

%e Let B(x) = x*A(x), then A(x) equals the infinite product involving successive iterations of B(x) starting with

%e A(x) = x/(1-x) / ( (1 - B(x)) * (1 - B(B(x))) * (1 - B(B(B(x)))) * (1 - B(B(B(B(x))))) * ...)

%e which is equivalent to

%e A(x) = x*(1-x) / ( (1 - x*A(x)) * (1 - x*A(x) * A(x*A(x))) * (1 - x*A(x) * A(x*A(x)) * A(x*A(x) * A(x*A(x)))) * ...).

%e RELATED SERIES.

%e Successive iterations of B(x) = x*A(x) begin

%e B(x) = x^2 + x^3 + 2*x^4 + 3*x^5 + 7*x^6 + 14*x^7 + 34*x^8 + 77*x^9 + ...

%e B(B(x)) = x^4 + 2*x^5 + 6*x^6 + 13*x^7 + 35*x^8 + 84*x^9 + 221*x^10 + ...

%e B(B(B(x))) = x^8 + 4*x^9 + 16*x^10 + 50*x^11 + 159*x^12 + 470*x^13 + ...

%e B(B(B(B(x)))) = x^16 + 8*x^17 + 48*x^18 + 228*x^19 + 974*x^20 + 3812*x^21 + ...

%e B(B(B(B(B(x))))) = x^32 + 16*x^33 + 160*x^34 + 1224*x^35 + 7900*x^36 + ...

%e etc.

%e The coefficients in the iterations of x*A(x) form a table that begins

%e n=1: [1, 1, 2, 3, 7, 14, 34, 77, 193, 472, 1214, 3099, ...];

%e n=2: [1, 2, 6, 13, 35, 84, 221, 556, 1464, 3801, 10107, ...];

%e n=3: [1, 4, 16, 50, 159, 470, 1397, 4033, 11656, 33284, ...];

%e n=4: [1, 8, 48, 228, 974, 3812, 14142, 50182, 172562, ...];

%e n=5: [1, 16, 160, 1224, 7900, 45096, 234764, 1136732, ...];

%e n=6: [1, 32, 576, 7568, 80568, 734672, 5938776, ...];

%e n=7: [1, 64, 2176, 52000, 977264, 15344032, 208985520, ...];

%e n=8: [1, 128, 8448, 382528, 13345504, 382081856, ...];

%e n=9: [1, 256, 33280, 2927744, 195986880, 10643805824, ...];

%e n=10: [1, 512, 132096, 22894848, 2998537088, 316503534848, ...];

%e etc.

%o (PARI) {a(n) = my(A=x, V=[0,1]); for(i=1,n, V = concat(V,0); A = Ser(V);

%o V[#V] = polcoeff( subst(A,x,x*A) - (1-x)*A^2, #V) ); V[n+1]}

%o for(n=1,40, print1(a(n),", "))

%Y Cf. A088792, A367386, A367390.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Jan 08 2024