login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367345
Compute the commas sequence starting at 1, as in A121805, except do the calculations in hexadecimal. The terms are written here in decimal.
1
1, 18, 53, 141, 350, 576, 578, 612, 678, 777, 924, 1120, 1124, 1192, 1325, 1539, 1593, 1743, 1990, 2094, 2327, 2448, 2457, 2611, 2669, 2888, 3027, 3087, 3340, 3545, 3703, 3829, 3924, 4003, 4066, 4099, 4148, 4213, 4294, 4391, 4504, 4633, 4778, 4939, 5116, 5309, 5518
OFFSET
1,2
COMMENTS
When written in hexadecimal the terms are 1, 12, 35, 8D, 15E, 240, 242, 264, 2A6, 309, 39C, 460, 464, 4A8, 52D, 603, 639, 6CF, 7C6, 82E, 917, 990, 999, A33, A6D, B48, BD3, C0F, D0C, DD9, ...
Finite with last term a(144693554136426354) = 18446744073709551480, which is FFFFFFFFFFFFFF78 in hexadecimal. - Michael S. Branicky, Nov 18 2023
LINKS
EXAMPLE
See A367344 for examples of similar calculations in base 8.
PROG
(Python)
from itertools import islice
from sympy.ntheory.factor_ import digits
def agen(b=16): # generator of terms
an, y = 1, 1
while y < b:
yield an
an, y = an + b*(an%b), 1
while y < b:
if str(digits(an+y, b)[1]) == str(y):
an += y
break
y += 1
print(list(islice(agen(), 50))) # Michael S. Branicky, Nov 16 2023
CROSSREFS
KEYWORD
nonn,base,fini
AUTHOR
N. J. A. Sloane, Nov 15 2023, following a suggestion from William Cheswick
STATUS
approved