%I #13 Nov 16 2023 07:38:45
%S 1,10,29,70,119,177,187,214,266,286,339,368,373,419,450,473,488,495,
%T 552,553,562,579,604,637,678,727,784,785,794,811,836,869,910,959,1016,
%U 1017,1027,1053,1095,1153,1163,1189,1231,1289,1299,1325,1367,1425,1435,1461,1503,1562
%N Compute the commas sequence starting at 1, as in A121805, except do the calculations in octal. The terms are written here in decimal (see also A367344).
%H Michael De Vlieger, <a href="/A367343/b367343.txt">Table of n, a(n) for n = 1..8367</a>
%e See A367344 for the calculation of the first three terms.
%t b = 8; a[1] = 1; a[n_] := a[n] = For[x = Mod[a[n - 1], b]; y = 0, y <= (b - 1), y++, k = a[n - 1] + b*x + y; If[y == IntegerDigits[k, b][[1]], Return[k]]]; Array[a, 10^4] (* _Michael De Vlieger_, Nov 15 2023, after _Jean-François Alcover_ at A121805 *)
%o (Python)
%o from itertools import islice
%o from sympy.ntheory.factor_ import digits
%o def agen(): # generator of terms
%o an, y = 1, 1
%o while y < 8:
%o yield an
%o an, y = an + 8*(an%8), 1
%o while y < 8:
%o if str(digits(an+y,8)[1]) == str(y):
%o an += y
%o break
%o y += 1
%o print(list(islice(agen(), 52))) # _Michael S. Branicky_, Nov 16 2023
%Y Cf. A121805, A367344.
%K nonn,base,fini,full
%O 1,2
%A _N. J. A. Sloane_, Nov 15 2023