Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #85 Jan 09 2025 12:26:45
%S 18,27,36,45,54,63,72,81,918,927,936,945,954,963,972,981,9918,9927,
%T 9936,9945,9954,9963,9972,9981,99918,99927,99936,99945,99954,99963,
%U 99972,99981,999918,999927,999936,999945,999954,999963,999972,999981,9999918,9999927,9999936,9999945,9999954,9999963,9999972,9999981
%N Numbers without comma-successors: these are the numbers k such that if the commas sequence A121805 is started at k instead of 1, there is no second term.
%C Comment from _N. J. A. Sloane_, Nov 19 2023 (Start)
%C Theorem. This sequence consists precisely of the decimal numbers of the form
%C 99...9xy = 100*(10^i-1) + 9*x + 9,
%C with i >= 0 copies of 9, and 1 <= x <= 8.
%C (See link for proof.) This was stated without proof by _David W. Wilson_ in 2007 (see the Angelini link), and was conjectured (in a slightly less precise form) by _Ivan N. Ianakiev_, Nov 16 2023.
%C This implies that the conjecture below is true, as well as the conjecture in A367342.
%C All terms are multiples of 9, and A367342 gives a(n)/9.
%C (End)
%C Numbers k such that A367338(k) = A367339(k) = -1.
%C By definition, A330129 is a subsequence.
%H N. J. A. Sloane, <a href="/A367341/b367341.txt">Table of n, a(n) for n = 1..408</a>
%H Eric Angelini, <a href="/A121805/a121805.pdf">The Commas Sequence</a>, Message to Sequence Fans, Sep 06 2016. [Cached copy, with permission]
%H Eric Angelini, Michael S. Branicky, Giovanni Resta, N. J. A. Sloane, and David W. Wilson, The Comma Sequence: A Simple Sequence With Bizarre Properties, <a href="http://arxiv.org/abs/2401.14346">arXiv:2401.14346</a>, Fibonacci Quarterly 62:3 (2024), 215-232.
%H Eric Angelini, Michael S. Branicky, Giovanni Resta, N. J. A. Sloane, and David W. Wilson, <a href="/A121805/a121805_1.pdf">The Comma Sequence: A Simple Sequence With Bizarre Properties</a>, Local copy.
%H N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=_EHAdf6izPI">Eric Angelini's Comma Sequence</a>, Experimental Math Seminar, Rutgers Univ., January 18, 2024, Youtube video; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/sloane2024.pdf">Slides</a>
%F The first eight terms are given by a(i) = 9*(i+1), for 1 <= i <= 8; thereafter, each successive block of eight terms is obtained by prefixing the terms of the previous block by 9. - _Michael S. Branicky_, Nov 15 2023 [This follows from the theorem above. - _N. J. A. Sloane_, Nov 19 2023]
%p for i from 0 to 4 do t1:=100*(10^i-1);
%p for x from 1 to 8 do lprint(t1+9*x+9);
%p od: od:
%t fQ[n_]:=Module[{k=n+10*Last[IntegerDigits[n]]+Range[9]}, Select[k,#-n==FromDigits[{Last[IntegerDigits[n]],First[IntegerDigits[#]]}]&]] =={};
%t Select[Range[10^5],fQ[#]&] (* _Ivan N. Ianakiev_, Nov 16 2023 *)
%o (Python)
%o from itertools import islice
%o def ok(n):
%o an, y = n, 1
%o while y < 10:
%o an, y = an + 10*(an%10), 1
%o while y < 10:
%o if str(an+y)[0] == str(y):
%o an += y
%o break
%o y += 1
%o if y < 10:
%o return False
%o return True
%o print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, Nov 15 2023
%Y Cf. A121805, A367338, A367339, A367340, A367342.
%K nonn,base,changed
%O 1,1
%A _N. J. A. Sloane_, Nov 15 2023
%E a(33) and beyond from _Michael S. Branicky_, Nov 15 2023