login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Carmichael numbers k such that the multiplicative order of 2 modulo k is odd.
2

%I #15 Apr 22 2024 13:47:56

%S 15841,52633,5049001,68154001,104852881,238244041,382536001,

%T 3215031751,3863326897,7211236033,8214723001,15462960481,22008493921,

%U 23000028481,29392867201,31708772257,41217865921,53125756201,60518537641,74190097801,77874636001,83828294551,103387371361

%N Carmichael numbers k such that the multiplicative order of 2 modulo k is odd.

%C These Carmichael numbers seem to be relatively rare: among the 4279356 Carmichael numbers below 2^64 only 3097 are terms of this sequence.

%H Amiram Eldar, <a href="/A367231/b367231.txt">Table of n, a(n) for n = 1..10000</a> (calculated using data from Claude Goutier)

%H Claude Goutier, <a href="http://www-labs.iro.umontreal.ca/~goutier/OEIS/A055553/">Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22</a>.

%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>.

%t Select[2*Range[3*10^6] + 1, Mod[#, CarmichaelLambda[#]] == 1 && CompositeQ[#] && OddQ[MultiplicativeOrder[2, #]] &]

%o (PARI) is(n) = n > 1 && n % 2 && !isprime(n) && n % lcm(znstar(n)[2]) == 1 && znorder(Mod(2, n)) % 2;

%Y Intersection of A002997 and A036259.

%Y Subsequence of A367230.

%Y Cf. A002326, A163956.

%K nonn

%O 1,1

%A _Amiram Eldar_, Nov 11 2023