login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers m whose prime indices have no nonnegative linear combination equal to bigomega(m).
24

%I #6 Nov 15 2023 08:06:12

%S 3,5,7,11,13,17,19,23,25,27,29,31,35,37,41,43,47,49,53,55,59,61,63,65,

%T 67,71,73,77,79,83,85,89,91,95,97,99,101,103,107,109,113,115,117,119,

%U 121,127,131,133,137,139,143,145,147,149,151,153,155,157,161,163

%N Numbers m whose prime indices have no nonnegative linear combination equal to bigomega(m).

%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

%C These are the Heinz numbers of the partitions counted by A367219.

%e The prime indices of 24 are {1,1,1,2} with (1+1+1+1) = 4 or (1+1)+(2) = 4 or (2+2) = 4, so 24 is not in the sequence.

%e The terms together with their prime indices begin:

%e 3: {2} 43: {14} 85: {3,7}

%e 5: {3} 47: {15} 89: {24}

%e 7: {4} 49: {4,4} 91: {4,6}

%e 11: {5} 53: {16} 95: {3,8}

%e 13: {6} 55: {3,5} 97: {25}

%e 17: {7} 59: {17} 99: {2,2,5}

%e 19: {8} 61: {18} 101: {26}

%e 23: {9} 63: {2,2,4} 103: {27}

%e 25: {3,3} 65: {3,6} 107: {28}

%e 27: {2,2,2} 67: {19} 109: {29}

%e 29: {10} 71: {20} 113: {30}

%e 31: {11} 73: {21} 115: {3,9}

%e 35: {3,4} 77: {4,5} 117: {2,2,6}

%e 37: {12} 79: {22} 119: {4,7}

%e 41: {13} 83: {23} 121: {5,5}

%t prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p], {k}]]]];

%t combs[n_,y_]:=With[{s=Table[{k,i}, {k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];

%t Select[Range[100], combs[PrimeOmega[#], Union[prix[#]]]=={}&]

%Y The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.

%Y sum-full sum-free comb-full comb-free

%Y -------------------------------------------

%Y partitions: A367212 A367213 A367218 A367219

%Y strict: A367214 A367215 A367220 A367221

%Y subsets: A367216 A367217 A367222 A367223

%Y ranks: A367224 A367225 A367226 A367227*

%Y A000700 counts self-conjugate partitions, ranks A088902.

%Y A112798 lists prime indices, reverse A296150, length A001222, sum A056239.

%Y A124506 appears to count combination-free subsets, differences of A326083.

%Y A229816 counts partitions whose length is not a part, ranks A367107.

%Y A304792 counts subset-sums of partitions, strict A365925.

%Y A365046 counts combination-full subsets, differences of A364914.

%Y Cf. A000720, A046663, A088314, A106529, A116861, A236912, A364345, A364346, A364347, A364350, A365073, A365312.

%K nonn

%O 1,1

%A _Gus Wiseman_, Nov 15 2023