login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367025
Triangle read by rows, T(n, k) = [x^k] p(n), where p(n) = (1 - hypergeom([-1/2, -n - 1, -n - 1], [1, 1], 4*x)) / (2*x).
0
1, 4, 1, 9, 9, 2, 16, 36, 32, 5, 25, 100, 200, 125, 14, 36, 225, 800, 1125, 504, 42, 49, 441, 2450, 6125, 6174, 2058, 132, 64, 784, 6272, 24500, 43904, 32928, 8448, 429, 81, 1296, 14112, 79380, 222264, 296352, 171072, 34749, 1430
OFFSET
0,2
FORMULA
T(n,k) = binomial(n+1,n-k)^2*binomial(2*k,k)/(k+1). - Detlef Meya, Nov 19 2023
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 4, 1;
[2] 9, 9, 2;
[3] 16, 36, 32, 5;
[4] 25, 100, 200, 125, 14;
[5] 36, 225, 800, 1125, 504, 42;
[6] 49, 441, 2450, 6125, 6174, 2058, 132;
[7] 64, 784, 6272, 24500, 43904, 32928, 8448, 429;
[8] 81, 1296, 14112, 79380, 222264, 296352, 171072, 34749, 1430;
[9] 100, 2025, 28800, 220500, 889056, 1852200, 1900800, 868725, 143000, 4862;
MAPLE
p := n -> (1 - hypergeom([-1/2, -n-1, -n-1], [1, 1], 4*x)) / (2*x):
T := (n, k) -> coeff(simplify(p(n)), x, k):
seq(seq(T(n, k), k = 0..n), n = 0..9);
MATHEMATICA
T[n_, k_]:=Binomial[n+1, n-k]^2*Binomial[2*k, k]/(k+1); Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]] (* Detlef Meya, Nov 19 2023 *)
CROSSREFS
Cf. A000290 (first column), A000108 (main diagonal).
Sequence in context: A021990 A182545 A084887 * A067015 A179193 A158199
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 07 2023
STATUS
approved