%I #9 Nov 07 2023 14:43:18
%S -1,-1,2,-1,8,2,-1,18,18,4,-1,32,72,64,10,-1,50,200,400,250,28,-1,72,
%T 450,1600,2250,1008,84,-1,98,882,4900,12250,12348,4116,264,-1,128,
%U 1568,12544,49000,87808,65856,16896,858,-1,162,2592,28224,158760,444528,592704,342144,69498,2860
%N Triangle read by rows, T(n, k) = [x^k] -hypergeom([-1/2, -n, -n], [1, 1], 4*x).
%F T(n, k) = binomial(n, k)^2 * binomial(2*k, k) / (2*k - 1).
%e Triangle T(n, k) starts:
%e [0] -1;
%e [1] -1, 2;
%e [2] -1, 8, 2;
%e [3] -1, 18, 18, 4;
%e [4] -1, 32, 72, 64, 10;
%e [5] -1, 50, 200, 400, 250, 28;
%e [6] -1, 72, 450, 1600, 2250, 1008, 84;
%e [7] -1, 98, 882, 4900, 12250, 12348, 4116, 264;
%e [8] -1, 128, 1568, 12544, 49000, 87808, 65856, 16896, 858;
%e [9] -1, 162, 2592, 28224, 158760, 444528, 592704, 342144, 69498, 2860;
%p p := n -> -hypergeom([-1/2, -n, -n], [1, 1], 4*x):
%p T := (n, k) -> coeff(simplify(p(n)), x, k):
%p seq(seq(T(n, k), k = 0..n), n = 0..9);
%Y Cf. A246065 (row sums), -A002420 and A284016 (main diagonal).
%Y Cf. A367022, A367023, A387025.
%K sign,tabl
%O 0,3
%A _Peter Luschny_, Nov 07 2023