login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Maximum number of codewords in a binary Herbert code of length n that corrects two deletions.
0

%I #41 Nov 08 2023 11:16:36

%S 2,2,2,3,4,5,6,8,9,11,15,18,22,30,35,43,57,69,88,114,142,177,227

%N Maximum number of codewords in a binary Herbert code of length n that corrects two deletions.

%C The maximum number of codewords for different N in Helberg code for two deletion binary Helberg code.

%H K. A. S. Abdel-Ghaffar, F. Paluncic, H. C. Ferreira and W. A. Clarke, <a href="https://doi.org/10.1109/TIT.2011.2174961">On Helberg's Generalization of the Levenshtein Code for Multiple Deletion/Insertion Error Correction</a>, IEEE Transactions on Information Theory, vol. 58, no. 3, pp. 1804-1808, March 2012, doi: 10.1109/TIT.2011.2174961. See also <a href="https://www.researchgate.net/publication/260541992_On_Helberg&#39;s_Generalization_of_the_Levenshtein_Code_for_Multiple_DeletionInsertion_Error_Correction">on ResearchGate</a>.

%e For N = 4, using the Helberg formula Equation 2 in the reference paper, we will get different values of 'a' for different codewords. Now, the maximum number of codewords for a particular 'a' will be 2 in this example.

%e The same formula is used to calculate 'a' and then the maximum number of codewords for different values of N.

%e Note: The first term will be obtained by applying the Helberg formula (Equation 2) with an offset of three. The first term will be calculated as a(3)=2.

%o (Python)

%o import numpy as np

%o import sys

%o def String_generate(n, k, x, final_list):

%o if n == 0:

%o final_list.append(x[:])

%o else:

%o for j in range(0, k):

%o x.append(j)

%o String_generate(n-1, k, x, final_list)

%o x.pop()

%o return x

%o def Vi_generate(n, s, v):

%o for i in range(0, n):

%o for j in range(1, s+1):

%o v[i] += v[i-j] if (i-j >= 0) else 0

%o def find_M(v, s, n):

%o m = 1

%o for i in range(1, s+1):

%o m += v[n-i]

%o return m

%o def func(num, v, m, n, ans):

%o sum = 0

%o for i in range(0, n):

%o sum += v[i]*num[i]

%o sum = sum % m

%o if sum not in ans:

%o ans[sum] = []

%o ans[sum].append(num)

%o def a(n):

%o x = []

%o final_list = []

%o q = 2

%o s = 2

%o v = np.ones(n)

%o ans = {}

%o if s < n:

%o String_generate(n, q, x, final_list)

%o x = final_list

%o x = np.array(x)

%o Vi_generate(n, s, v)

%o m = find_M(v, s, n)

%o for i in x:

%o func(i, v, m, n, ans)

%o else:

%o ans[0] = []

%o return max(len(v) for v in ans.values())

%K nonn,more

%O 3,1

%A _Devdeep Shetranjiwala_ and Manish Gupta, Oct 28 2023