login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The largest exponentially evil divisor of n.
7

%I #7 Oct 28 2023 03:48:35

%S 1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,8,1,1,27,1,1,1,1,32,1,

%T 1,1,1,1,1,1,8,1,1,1,1,1,1,1,8,1,1,1,1,1,27,1,8,1,1,1,1,1,1,1,64,1,1,

%U 1,1,1,1,1,8,1,1,1,1,1,1,1,8,27,1,1,1,1,1

%N The largest exponentially evil divisor of n.

%C The largest divisor of n that is an exponentially evil number (A262675).

%C The number of exponentially evil divisors of n is A366902(n) and their sum is A366904(n).

%H Amiram Eldar, <a href="/A366906/b366906.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(p^e) = p^max{k=1..e, k evil}.

%F a(n) <= n, with equality if and only if n is exponentially evil number (A262675).

%F a(n) >= 1, with equality if and only if n is a cubefree number (A004709).

%t maxEvil[e_] := Module[{k = e}, While[OddQ[DigitCount[k, 2, 1]], k--]; k]; f[p_, e_] := p^maxEvil[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) s(n) = {my(k = n); while(hammingweight(k)%2, k--); k;}

%o a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2]));}

%Y Cf. A004709, A262675, A366902, A366904.

%Y Similar sequences: A353897, A365683, A366905.

%K nonn,easy,mult

%O 1,8

%A _Amiram Eldar_, Oct 27 2023