login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366900
a(n) is the number of real roots of the derivative of the cyclotomic polynomial Phi(n, 1/x).
0
0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 3, 0, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 0, 3, 1, 3, 2, 1, 1, 3, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 2, 3, 1, 1, 4, 1, 1, 3, 0, 3, 3, 1, 2, 3, 3, 1, 2, 1, 1, 3, 2, 3, 3, 1, 2, 1, 1, 1, 4, 3, 1, 3
OFFSET
1,12
FORMULA
For n = 2^m, a(n) = 0;
For odd n = p^m, a(n) = 1;
For odd n = p1^r1*p2^r2*...*pm^rm, a(n) = 2m-1;
For n = 2*p1^r1*p2^r2*...*pm^rm, a(n) = 2m-1 if p1, ..., pm are odd;
For n = 2^r*p1^r1*p2^r2*...*pm^rm, a(n) = 2m if p1, ..., pm are odd and r > 1.
MATHEMATICA
c[n_, y_] := Limit[D[Cyclotomic[n, 1/x], x], x -> y]; Table[Length[Solve[c[n, x] == 0, x, Reals]], {n, 1, 128}]
PROG
(PARI) a(n)=my(v=valuation(n, 2)); 2*omega(n>>v) - (v <= 1 && n > 2) \\ Andrew Howroyd, Oct 27 2023
CROSSREFS
Sequence in context: A186114 A326934 A290691 * A155726 A325687 A230079
KEYWORD
nonn
AUTHOR
Gevorg Hmayakyan, Oct 26 2023
STATUS
approved