login
A366883
a(n) = greatest number of unrestricted partitions between successive strict partitions of n, with partitions listed in Mathematica order.
0
0, 0, 0, 2, 1, 2, 4, 7, 5, 7, 13, 19, 26, 22, 27, 45, 61, 78, 99, 87, 107, 166, 213, 267, 324, 396, 361, 434, 644, 806, 975, 1167, 1385, 1641, 1541, 1819, 2611, 3200, 3786, 4451, 5196, 6054, 7025, 6744, 7823, 10983, 13190, 15378, 17777, 20482, 23534, 26978, 30860, 30094, 34422, 47456, 56127, 64558, 73684, 83887, 95277, 108061, 122309, 138265, 136498
OFFSET
3,4
COMMENTS
For Mathematica order of partitions, see A080577.
EXAMPLE
The 6 strict partitions of 8 are [8], [7,1], [6,2], [5,3], [5,2,1], [4,3,1]. These are in positions 1,2,3,5,6,9 among the 22 unrestricted partitions of 8, with [5,1,1,1] and [4,4] positioned between [5,2,1] and [4,3,1]. Thus, a(8) = 2.
MATHEMATICA
q[n_, k_] := q[n, k] = Select[IntegerPartitions[n], DeleteDuplicates[#] == # &][[k]];
u[n_, k_] := u[n, k] = Position[IntegerPartitions[n], q[n, k]];
t[n_] := Table[u[n, k], {k, 1, PartitionsQ[n]}];
Table[-1 + Max[Differences[t[n]]], {n, 3, 10}]
CROSSREFS
Cf. A000009 (strict partitions), A000041 (partitions), A080577.
Sequence in context: A058553 A038067 A136102 * A306810 A325747 A325672
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 23 2023
EXTENSIONS
Terms a(41) onward from Max Alekseyev, Oct 10 2024
STATUS
approved