login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366837
Expansion of the unique real solution y(t) to the equation y*(1+y)^2/((1-y)*(1-y^3)) = t/(1+3t) with initial value y(0)=0.
0
0, 1, -6, 41, -314, 2630, -23532, 220869, -2147042, 21429482, -218310836, 2260625674, -23722964740, 251724659212, -2696226815960, 29112495523245, -316541381682162, 3462842349049666, -38086918804472292, 420921653789328030, -4671874553638732300
OFFSET
0,3
COMMENTS
The solution y(t) is used to express the Segre series defined in (1) in the case alpha is a rank 2 K-theory class of K-nontrivial surfaces in the reference below (Theorem 2 in Section 1.5).
LINKS
Alina Marian, Dragos Oprea, and Rahul Pandharipande, Higher rank Segre integrals over the Hilbert scheme of points, arXiv:1712.02382 [math.AG], 2017-2021.
FORMULA
G.f.: series reversion of x*(1 + x)^2/(1 - 4*x - 6*x^2 - 4*x^3 + x^4). - Andrew Howroyd, Oct 26 2023
PROG
(SageMath)
# compute y(t) satisfies y*(1+y)^2/((1-y)*(1-y^3))=t/(1+3t) with y(0)=0
# it is the same as (1+3t)*(y+2y^2+y^3)=t*(1-y-y^3+y^4)
# further, t*y^4-(1+4*t)*y^3-(2+6*t)*y^2-(1+4*t)*y+t=0
# Suppose y(t) = p_d(t)+O(t^{d+1}) where p_d is a polynomial of deg d. The above equation will become
# t*p^4-(1+4*t)*p^3-(2+6*t)*p^2-(1+4*t)*p+t+O(t^{d+1})=0
Y.<t, c> = PolynomialRing(QQ)
#YY.<t> = PolynomialRing(Y)
# initialization of y(t). Y_list are coefficients.
Y_list = [0]
# compute y(t) up to N-th degree.
N = 20
for ind in range(N):
# compute one degree higher
p = sum([Y_list[i]*t^i for i in range(0, len(Y_list))])
# compute one degree higher
itera = c*t^(len(Y_list)) + p
q = t*itera^4-(1+4*t)*itera^3-(2+6*t)*itera^2-(1+4*t)*itera+t
l = q.coefficient(t^len(Y_list)).coefficients()
new_coeff = -l[1]/l[0]
Y_list.append(new_coeff)
(PARI) seq(n)={Vec(serreverse(x*(1 + x)^2/(1 - 4*x - 6*x^2 - 4*x^3 + x^4) + O(x*x^n)), -n-1)} \\ Andrew Howroyd, Oct 26 2023
CROSSREFS
Sequence in context: A077147 A100770 A084397 * A024078 A095177 A199553
KEYWORD
sign
AUTHOR
Zhongyi Shi, Oct 25 2023
STATUS
approved