Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 08 2023 07:50:40
%S 0,0,0,0,1,1,4,4,10,13,23,27,52,60,94,118,175,213,310,373,528,643,862,
%T 1044,1403,1699,2199,2676,3426,4131,5256,6295,7884,9479,11722,14047,
%U 17296,20623,25142,29942,36299,43081,51950,61439,73668,87040,103748,122149,145155,170487
%N Number of non-knapsack integer partitions of n.
%C A multiset is non-knapsack if there exist two different submultisets with the same sum.
%F a(n) = A000041(n) - A108917(n).
%e The a(4) = 1 through a(9) = 13 partitions:
%e (211) (2111) (321) (3211) (422) (3321)
%e (2211) (22111) (431) (4221)
%e (3111) (31111) (3221) (4311)
%e (21111) (211111) (4211) (5211)
%e (22211) (32211)
%e (32111) (33111)
%e (41111) (42111)
%e (221111) (222111)
%e (311111) (321111)
%e (2111111) (411111)
%e (2211111)
%e (3111111)
%e (21111111)
%t Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Total/@Union[Subsets[#]]&]], {n,0,15}]
%Y The complement is counted by A108917, strict A275972, ranks A299702.
%Y These partitions have ranks A299729.
%Y The strict case is A316402.
%Y The binary version is A366753, ranks A366740.
%Y A000041 counts integer partitions, strict A000009.
%Y A276024 counts positive subset-sums of partitions, strict A284640.
%Y A304792 counts subset-sum of partitions, strict A365925.
%Y A365543 counts partitions with subset-sum k, complement A046663.
%Y A365661 counts strict partitions with subset-sum k, complement A365663.
%Y A366738 counts semi-sums of partitions, strict A366741.
%Y Cf. A002033, A006827, A122768, A126796, A238628, A365923, A365924, A367095.
%K nonn
%O 0,7
%A _Gus Wiseman_, Nov 08 2023