login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying 0 = Sum_{n=-oo..+oo} x^n * A(x)^n * (4 - x^(n-1))^(n+1).
6

%I #5 Oct 29 2023 22:02:41

%S 1,4,24,236,2504,28332,335656,4108688,51558000,659737684,8575826448,

%T 112927383328,1503232394344,20195196226124,273467339844368,

%U 3728623506924660,51145851271818536,705322823588365592,9772995790887474920,135992755093954566300,1899633478390401668072

%N Expansion of g.f. A(x) satisfying 0 = Sum_{n=-oo..+oo} x^n * A(x)^n * (4 - x^(n-1))^(n+1).

%C a(n) = Sum_{k=0..n} A366730(n,k) * 4^k for n >= 0.

%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.

%F (1) 0 = Sum_{n=-oo..+oo} x^n * A(x)^n * (4 - x^(n-1))^(n+1).

%F (2) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( A(x)^n * (1 - 4*x^(n+1))^(n-1) ).

%e G.f.: A(x) = 1 + 4*x + 24*x^2 + 236*x^3 + 2504*x^4 + 28332*x^5 + 335656*x^6 + 4108688*x^7 + 51558000*x^8 + 659737684*x^9 + 8575826448*x^10 + ...

%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);

%o A[#A] = polcoeff( sum(n=-#A,#A, x^n * Ser(A)^n * (4 - x^(n-1))^(n+1) ), #A-2));A[n+1]}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A366730, A366731, A366732, A366733, A366735.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Oct 29 2023