login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of length n avoiding the permutations 13452, 13542, 14253, 14352, 14532, 15243, 15342, 15432, 24153, and 25143.
2

%I #20 Jul 22 2024 15:50:38

%S 1,1,2,6,24,110,540,2772,14704,79974,443592,2499596,14268740,82339972,

%T 479549860,2815097792,16639456452,98947148126,591537712636,

%U 3553227623724,21434384242112,129796819639908,788724906697704,4807951095533744,29393378297989024

%N Number of permutations of length n avoiding the permutations 13452, 13542, 14253, 14352, 14532, 15243, 15342, 15432, 24153, and 25143.

%H Jay Pantone, <a href="/A366706/b366706.txt">Table of n, a(n) for n = 0..100</a>

%H Michael H. Albert, Christian Bean, Anders Claesson, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, <a href="https://arxiv.org/abs/2202.07715">Combinatorial Exploration: An algorithmic framework for enumeration</a>, arXiv:2202.07715 [math.CO], 2022.

%H Michael H. Albert, Christian Bean, Anders Claesson, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, <a href="https://permpal.com/perms/basis/02341_02431_03142_03241_03421_04132_04231_04321_13042_14032/">PermPAL Database</a>

%H Christian Bean, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, <a href="https://doi.org/10.37236/12686">Permutations avoiding bipartite partially ordered patterns have a regular insertion encoding</a>, The Electronic Journal of Combinatorics, Volume 31, Issue 3 (2024); <a href="https://arxiv.org/abs/2312.07716">arXiv preprint</a>, arXiv:2312.07716 [math.CO], 2023.

%F G.f. satisfies the minimal polynomial (4*x-1)*F(x)^4+(-16*x+6)*F(x)^3+(x^2+24*x-13)*F(x)^2+(-16*x+12)*F(x)+4*x-4 = 0.

%F a(n) ~ sqrt((2 - 8*s + (12 + r)*s^2 - 8*s^3 + 2*s^4) / (2*Pi*(-13 + r^2 + 24*r*(-1 + s)^2 + 18*s - 6*s^2))) / (n^(3/2) * r^(n - 1/2)), where r = 0.15337200146837895871745857265131731893709232... and s = 1.329726282094188543969222211385207173949290634... are positive real roots of the system of equations r*(4*(-1 + s)^4 + r*s^2) = (2 - 3*s + s^2)^2, 6 + 8*r*(-1 + s)^3 + r^2*s + 9*s^2 = 13*s + 2*s^3. - _Vaclav Kotesovec_, Jul 22 2024

%K nonn

%O 0,3

%A _Jay Pantone_, Oct 17 2023