login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of sphinx tilings of T(n+12) with a central T(n) defect where T(k) is an equilateral triangle with side length k.
1

%I #55 Apr 28 2024 11:10:33

%S 830,216,144,13760,396,144,185348,576,144,3222390,756,144,57614324,

%T 936,144,1033400616,1116,144,18543135720,1296,144

%N Number of sphinx tilings of T(n+12) with a central T(n) defect where T(k) is an equilateral triangle with side length k.

%C A sphinx polyad frame has at least two different sphinx tilings where each of the elementary sphinx tiles occupies a different position.

%C The frames in this sequence that have 144 sphinx tilings led to the discovery of an infinite series of sphinx polyad frames.

%C How many polyiamonds can form an infinite series of fundamental polyads?

%H Eurekaalert, <a href="https://www.eurekalert.org/news-releases/1038709">Riddles of the sphinx</a>, 2024.

%H Greg Huber, Craig Knecht, Walter Trump, and Robert M. Ziff, <a href="https://arxiv.org/abs/2304.14388">Riddles of the sphinx tilings</a>, arXiv:2304.14388 [cond-mat.stat-mech], 2023.

%H Craig Knecht, <a href="/A366704/a366704.png">Example for the sequence</a>.

%H Craig Knecht, <a href="/A366704/a366704_9.png">Hemisphinx infinite polyad series</a>.

%H Craig Knecht, <a href="/A366704/a366704_10.png">Infinite polyad series construction ideas</a>.

%H Craig Knecht, <a href="/A366704/a366704_4.png">Infinite sphinx fundamental polyad series</a>.

%H Craig Knecht, <a href="/A366704/a366704_6.png">Insert tiles in T12</a>.

%H Craig Knecht, <a href="/A366704/a366704_2.png">Mapping inserts and polyads in frames with 144 tilings</a>.

%H Craig Knecht, <a href="/A366704/a366704_1.png">Order 8 fundamental polyads</a>.

%H Craig Knecht, <a href="/A366704/a366704_5.png">Order 12 polyad</a>.

%H Craig Knecht, <a href="/A366704/a366704_7.png">Polyad overlap</a>.

%F Conjecture: a(3*k + 2) = 144.

%F Conjecture: a(3*k + 1) = 180*k + 216.

%Y Cf. A279887.

%K nonn,more

%O 0,1

%A _Craig Knecht_, Oct 17 2023

%E a(12)-a(20) from _Walter Trump_, Oct 20 2023