login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the divisors of 9^n-1.
12

%I #10 Jan 07 2024 15:32:25

%S 15,186,1680,15876,123690,1541568,8992680,111757968,967814400,

%T 9366647892,62424587520,852903426816,4766016364260,55176998178240,

%U 550081165885440,4829754617483040,31725040326819840,471309320999516160,2535353780263288800,33995669076586206864

%N Sum of the divisors of 9^n-1.

%H Max Alekseyev, <a href="/A366662/b366662.txt">Table of n, a(n) for n = 1..690</a>

%F a(n) = sigma(9^n-1) = A000203(A024101(n)).

%F a(n) = A366576(2*n) = A366576(n) * A366578(n) * (2^(4 + A007814(n)) - 1) / (2^(3 + A007814(n)) - 1) / 3. - _Max Alekseyev_, Jan 07 2024

%e a(2)=186 because 9^2-1 has divisors {1, 2, 4, 5, 8, 10, 16, 20, 40, 80}.

%p a:=n->numtheory[sigma](9^n-1):

%p seq(a(n), n=1..30);

%t DivisorSigma[1, 9^Range[30]-1]

%Y Cf. A024101, A000203, A366660, A366661, A366663.

%Y Cf. A075708, A366576, A366603, A366613, A366622, A366634, A366653, A102146, A366684, A366710.

%K nonn

%O 1,1

%A _Sean A. Irvine_, Oct 15 2023