Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 09 2024 18:46:29
%S 2,3,4,8,4,12,16,12,8,20,48,24,16,12,64,64,8,48,64,24,16,64,64,24,32,
%T 96,768,192,32,24,1536,24,8,256,512,1536,64,96,256,64,64,96,1024,48,
%U 128,1280,256,96,128,96,8192,1024,32,48,1024,2304,256,192,256,192
%N Number of divisors of 8^n+1.
%H Max Alekseyev, <a href="/A366656/b366656.txt">Table of n, a(n) for n = 0..502</a>
%F a(n) = sigma0(8^n+1) = A000005(A062395(n)).
%F a(n) = A046798(3*n). - _Max Alekseyev_, Jan 09 2024
%e a(4)=4 because 8^4+1 has divisors {1, 17, 241, 4097}.
%p a:=n->numtheory[tau](8^n+1):
%p seq(a(n), n=0..100);
%t DivisorSigma[0, 8^Range[0,59] + 1] (* _Paul F. Marrero Romero_, Nov 12 2023 *)
%o (PARI) a(n) = numdiv(8^n+1);
%Y Cf. A062395, A000005, A057936, A274905, A366653, A366638, A366655, A366657, A366658.
%Y Cf. A046798, A366577, A366606, A366616, A366628, A366637, A366665, A344897, A366688, A366714.
%K nonn
%O 0,1
%A _Sean A. Irvine_, Oct 15 2023