login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = denominator(Bernoulli(n, x)) / denominator(Bernoulli'(n, x)).
1

%I #10 Oct 14 2023 13:13:30

%S 1,2,6,1,30,1,42,1,10,1,66,1,2730,1,2,3,170,1,798,1,110,3,46,1,546,1,

%T 2,1,870,1,14322,1,170,3,2,1,1919190,1,2,3,4510,1,1806,1,46,15,94,1,

%U 1326,1,22,3,530,1,798,1,290,3,118,1,56786730,1,2,3,34,5,64722

%N a(n) = denominator(Bernoulli(n, x)) / denominator(Bernoulli'(n, x)).

%F a(n) = A144845(n) / A324370(n).

%p seq(denom(bernoulli(n, x))/denom(diff(bernoulli(n, x), x)), n = 0..66);

%o (PARI) a(n) = lcm(apply(denominator, Vec(bernpol(n))))/lcm(apply(denominator, Vec(deriv(bernpol(n))))); \\ _Michel Marcus_, Oct 14 2023

%Y Cf. A144845/A324370, A366572, A144845/A366168 (2nd derivative).

%K nonn,frac

%O 0,2

%A _Peter Luschny_, Oct 13 2023