Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Oct 15 2023 22:03:05
%S 2,6,18,54,564,3512,6542,564163,2063689,54400028,5586502348,
%T 252252704148404,971269945245201,3745011184713964
%N Numbers k such that bitwise AND of prime(k) and prime(k+1) = 1.
%C Suggested by a comment by _Alex Ratushnyak_ in A175330.
%F a(n) = A007053(A214415(n-1)).
%e 18 is a term since prime(18) AND prime(19) = 1,
%e prime(18) = 61 = binary 0111101
%e prime(19) = 67 = binary 1000011
%e bitwise AND = 0000001
%t A366550list[upto_]:=PrimePi[Select[2^Range[upto],BitAnd[NextPrime[#],NextPrime[#,-1]]==1&]];
%t A366550list[37] (* Uses formula, considering values in A214415 up to 37 *)
%o (PARI) isok(k) = bitand(prime(k), prime(k+1)) == 1; \\ _Michel Marcus_, Oct 14 2023
%Y Positions of ones in A175330.
%Y Cf. A007053, A214415.
%K nonn,base,hard,more
%O 1,1
%A _Paolo Xausa_, Oct 13 2023