login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^2 + 83*n - 81.
1

%I #11 Apr 23 2024 12:58:34

%S -81,3,89,177,267,359,453,549,647,747,849,953,1059,1167,1277,1389,

%T 1503,1619,1737,1857,1979,2103,2229,2357,2487,2619,2753,2889,3027,

%U 3167,3309,3453,3599,3747,3897,4049,4203,4359,4517,4677,4839,5003,5169,5337,5507,5679,5853,6029,6207,6387,6569

%N a(n) = n^2 + 83*n - 81.

%C Euler observed that the polynomial n^2 + n + 41 takes distinct prime values for the 40 consecutive integers from n = 0 to n = 39.

%C For the 73 integers in the interval -41 <= n <= 31, the unsigned sequence term |a(n)| is either a prime, (3^k)*prime (for some small value of k), or a power of 3 (for two values of n). See the example section below.

%C For the 88 integers in the interval -58 <= n <= 29, the unsigned sequence term |(1/3)*a(3*n+1)| = |3*n^2 + 85*n + 1| is either a prime, (3^k)*prime (for some small value of k), or a power of 3 (for two values of n).

%C |a(3*n+2)| takes distinct prime values for the 24 consecutive integers from n = -14 to n = 9.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomial</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f. (163*x^2 - 246*x + 81)/(x - 1)^3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = -81, a(1) = 3 and a(2) = 89.

%F Sum_(n>=0) 1/a(n) = (psi((83+sqrt 7213)/2-psi((83-sqrt 7213)/2)/sqrt(7213) = 0.37949155... - _R. J. Mathar_, Apr 23 2024

%e For integer n in the interval [-41, 31], the unsigned sequence terms |a(n)| factorize as:

%e [ 3*601, 1801, 3*599, (3^2)*199, 1783, (3^2)*197, 3*587, 1747, 3*577, 3*571, 1693, 3*557, (3^3)*61, 1621, (3^3)*59, 3*521, 1531, 3*499, 3*487, 1423, 3*461, (3^2)*149, 1297, (3^2)*139, 3*401, 1153, 3*367, 3*349, 991, 3*311, (3^2)*97, 811, (3^2)*83, 3*227, 613, 3*181, 3*157, 397, 3*107, (3^5), 163, (3^4), 3, 89, 3*59, 3*89, 359, 3*151, (3^2)*61, 647, (3^2)*83, 3*283, 953, 3*353, 3*389, 1277, 3*463, (3^2)*167, 1619, (3^2)*193, 3*619, 1979, 3*701, 3*743, 2357, 3*829, (3^3)*97, 2753, (3^3)*107, 3*1009, 3167, 3*1103, 3*1151].

%p seq(n^2 + 83*n - 81, n = 0..50)

%t Table[n^2 + 83*n - 81, {n, 0, 50}]

%o (PARI) vector(50, n, n^2 + 83*n - 81)

%Y Cf. A005846, A007641, A048988, A366457.

%K sign,easy

%O 0,1

%A _Peter Bala_, Oct 12 2023